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Quantum Theory 
 
An Introduction to Quantum Theory 
Quantum mechanics was developed in the early twentieth century to explain experimental 
observations that could not be explained by classical physics.  In many cases various 
quantisation ‘rules’ were proposed to explain these experimental observations but these 
did not have any classical justification.  This results in physics that is difficult to reconcile 
with everyday experience or with normal intuition. 
 
This led to two of the most famous physicists of the twentieth century to make the following 
statements: 
 
‘If quantum mechanics hasn’t profoundly shocked you, you haven’t understood it yet.’ 
Neils Bohr 
 
‘I think it safe to say that no one understands quantum mechanics.’ 
Richard Feynman 
 
However, quantum mechanics has been one of the most successful theories in physics 
explaining many experimental observations such as blackbody radiation, the photoelectric 
effect, spectra, atomic structure and electron diffraction. 
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Blackbody Radiation 
Towards the end of the nineteenth century there was interest in the frequencies (or 
wavelengths) emitted by a ‘black body’ when the temperature is increased. When an 
object is heated it can radiate large amounts of energy as infrared radiation. We can feel 
this if we place a hand near, but not touching, a hot object. As an object becomes hotter it 
starts to glow a dull red, followed by bright red, then orange, yellow and finally white (white 
hot). At extremely high temperatures it becomes a bright blue-white colour. 
 
Measurements were made of the intensity of the light emitted at different frequencies (or 
wavelengths) by such objects. In addition measurements were made at different 
temperatures. In order to improve the experiment and avoid any reflections of the 
radiation, a cavity was used with a small hole, which emits the radiation: a black body.  
 
A surface that absorbs all wavelengths of electromagnetic radiation is also the best emitter 
of electromagnetic radiation at any wavelength. Such an ideal surface is called a black 
body. The continuous spectrum of radiation it emits is called black-body radiation. 
 
It was found that the amount of black-body radiation emitted at any frequency depends 
only on the temperature, not the actual material. 
 
Specific intensity is a measure of the radiation emitted by a body.  Irradiance is a measure 
of the radiation received by a surface. 
 
Graphs of specific intensity against wavelength (or frequency) are shown in Figure 1.  As 
the temperature increases, each maximum shifts towards the higher frequency (shorter 
wavelength). 
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Figure 1 Graphs of specific intensity against wavelength and against frequency. 

 
Attempts to obtain theoretically the correct black-body graph using classical mechanics 
failed. Wien obtained an equation that ‘fitted’ observations at high frequencies (low 
wavelengths). Later Lord Rayleigh obtained an equation that ‘fitted’ at low frequencies but 
tended off to infinity at high frequencies (see line on the above frequency graph). This 
divergence was called the ultraviolet catastrophe and puzzled many leading scientists of 
the day. 
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In 1900 Planck looked at the two equations and produced a ‘combined’ relationship, which 
gave excellent agreement with the experimental curve. However, initially this relationship 
could not be derived from first principles. It was a good mathematical ‘fudge’! 
 
Planck studied his relationship and the theory involved and noticed that he could resolve 
the problem by making the assumption that the absorption and emission of radiation by the 
oscillators could only take place in ‘jumps’ given by:  
 
E = nhf (1) 
 
where E is energy, f is frequency, h is a constant and n = 0, 1, 2, 3, …. 
 
Using this assumption he could derive his equation from first principles. The constant of 
proportionality h was termed Planck’s constant. (The word quantum, plural quanta, comes 
from the Latin ‘quantus’, meaning ‘how much’.)  
 
It must be emphasised that Planck did this in a mathematical way with no justification as to 
why the energy should be quantised – but it worked! To Planck the oscillators were purely 
theoretical and radiation was not actually emitted in ‘bundles’, it was just a ‘calculation 
convenience’. It was some years before Planck accepted that radiation was really in 
energy packets. 
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The Photoelectric Effect 
In 1887 Hertz observed that a spark passed between two plates more often if the plates 
were illuminated with ultraviolet light. Later experiments by Hallwachs and Lenard gave the 
unexpected results we are familiar with, namely: 
 
(a) the non-emission of electrons with very bright but low frequency radiation on a metal 

surface, e.g. very bright red light, and  
(b) the increase in the speed of the emitted electron with frequency but not with intensity. 

Increasing the intensity only produced more emitted electrons. 
 
These results were unexpected because energy should be able to be absorbed continuously 
from a wave. An increase in the intensity of a wave also means an increase in amplitude 
and hence a larger energy. 
 
In 1905 Einstein published a paper on the photoelectric effect entitled On a Heuristic 
Viewpoint Concerning the Production and Transformation of Light. He received the Nobel 
Prize for Physics for this work in 1921. The puzzle was why energy is not absorbed from a 
continuous wave, e.g. any electromagnetic radiation, in a cumulative manner. It should just 
take more time for energy to be absorbed and an electron emitted but this does not happen. 
Einstein proposed that electromagnetic radiation is emitted and absorbed in small packets. 
(The word ‘photon’ was introduced by Gilbert in 1926.) The energy of each packet is given 
by: 
 
E = hf (2) 
 
where E is the energy of a ‘packet’ of radiation of frequency f.  
 
This proposal also explained why the number of electrons emitted depended on the 
irradiance of the electromagnetic radiation and why the velocity of the emitted electrons 
depended on the frequency. It did not explain the ‘packets’ or why they should have this 
physical ‘reality’. 
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Models of the Atom 
Rutherford’s scattering experiment indicated that the majority of the mass of the atom was 
in a small nucleus, with the electrons ‘somewhere’ in the atomic space. He and his 
assistants could not ‘see’ the electrons. A picturesque model of the atom, similar to a small 
solar system, came into fashion. This model had some features to commend it. Using 
classical mechanics, an electron in an orbit could stay in that orbit, the central force being 
balanced by electrostatic attraction. However, the electron has a negative charge and 
hence it should emit radiation, lose energy and spiral into the nucleus. 
 
The current theory was insufficient. Why do the electrons ‘remain in orbit’? Do they in fact 
‘orbit’? 
 
In the late nineteenth century attempts were made to introduce some ‘order’ to the specific 
frequencies emitted by atoms. Balmer found, by trial and error, a simple formula for a 
group of lines in the hydrogen spectra in 1885.  
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where λ is the wavelength, R the Rydberg constant, n is an integer 2, 3, 4,… 
 
Other series were then discovered, e.g. Lyman with the first fraction 1/12 and Paschen with 
the first fraction 1/32. However, this only worked for hydrogen and atoms with one electron, 
e.g. ionised helium, and moreover did not provide any theoretical reason why the formula 
should work.  
 
In 1913 Bohr introduced the idea of energy levels. Each atom has some internal energy 
due to its structure and internal motion but this energy cannot change by any variable 
amount, only by specific discrete amounts. Any particular atom, e.g. an atom of gold say, 
has a specific set of energy levels. Different elements each have their own set of levels. 
Experimental evidence of the day provided agreement with this idea and energy level 
values were obtained from experimental results. Transitions between energy levels give 
the characteristic line spectra for elements.  
 
In order to solve the problem that an electron moving in a circular orbit should continuously 
emit radiation and spiral into the nucleus, Bohr postulated that an electron can circulate in 
certain permitted, stable orbits without emitting radiation. He made the assumption that the 
normal electromagnetic phenomena did not apply at the atomic scale! Furthermore he 
made an intuitive guess that angular momentum is quantised. It is said that he noticed that 
the units of Planck’s constant (J s–1) are the same as those of angular momentum (kg m2 
s–1). The allowed orbit, of radius r, of an electron must have angular momentum of an 
integral multiple of h/2π:  
 

2

nh
mvr    (4) 

 
where n is an integer 1, 2, 3,… 
 
The angular momentum of a particle, of mass m, moving with tangential speed v, is mvr.  
 



 

7 
 

Thus for any specific orbit n we can calculate the radius of that orbit given the tangential 
speed or vice versa. 
 
Theoretical aside 
For the hydrogen atom with a single electron, mass me revolving around a proton (or more 
correctly around the centre of mass of the system), we can assume the proton is stationary 
since it is ~2000 times bigger. Hence, equating the electrostatic force and centripetal force 
mev2/r: 
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 where εo is the permittivity of free space (5) 

 
for the nth orbit. 
 
Equations (4) and (5) can be solved simultaneously to give: 
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for the nth orbit. 
 
Calculating r1 for the radius of the first Bohr orbit uses data given in assessments, namely 
h, me, e, ε0, and gives r1 = 5.3 × 10–11 m. 
 
These equations give the values of the radii for the non-radiating orbits for hydrogen and 
the value of n was called the quantum number of that orbit. 
 
Example problem 
 
For the hydrogen atom, calculate the velocity of an electron in the first Bohr orbit of radius 
5.3 × 10–11 m. 
 

Using 
2

nh
mvr   with n = 1 we obtain v = 2.2 × 106 m s–1. 

 
Note: Bohr’s theory only applies to an atom with one electron, e.g. the hydrogen atom or 
ionised helium atom.  
 
However, as mentioned above, the idea of energy levels can be extended to all atoms, not 
just hydrogen.  
 
So this theory is not complete since it did not allow any prediction of energy levels for any 
specific element nor did it explain why angular momentum should be quantised or why 
electrons in these orbits did not radiate electromagnetic energy! Another question was, 
‘what happens during a transition?’ 
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An aside 
An extension by de Broglie suggested that electron orbits are standing waves. The 
electron, now behaving like a wave, forms a standing wave of an integral number of 
wavelengths that just ‘fits’ into the circumference of an orbit. 
 

 

 
The red standing wave has an 
integral number of full waves 
‘fitting’ into the circumference. 

(The central nucleus is not 
shown.) 

Figure 2 Electron standing waves 
 
This is a picturesque idea but somewhat old-fashioned since an electron does not take a 
‘wiggly’ path around the nucleus. This is an example of a model that should not be taken 
too seriously and could lead to poor understanding. Quantum mechanics shows that we 
cannot describe the motion of an electron in an atom in this way. 
 
 
 
 
Electrons as “Standing Waves” 
An extension by Louis de Broglie suggested that electron orbits are standing waves. 
 
The electron, now behaving like a wave, forms a standing wave of an integer number of 
wavelengths that ‘fits’ into the circumference of an orbit. This is represented here: 

 
 
The dashed lines represent the circumference, while the solid line represents the 
hypothesised wave-like path of the electron. 
This is a picturesque idea but somewhat old-fashioned since an electron does not take a 
‘wiggly’ path around the nucleus. This is an example of a model that should not be taken 
too seriously and could lead to poor understanding. Quantum mechanics goes on to show 
that we cannot describe the motion of an electron in an atom in this way. 
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De Broglie Wavelength 
We use the word ‘particle’ to describe localised phenomena that transport mass and 
energy, and the word ‘wave’ to describe delocalised (spread out) phenomena that carry 
energy but no mass. 
Experimental observations seem to suggest that both electromagnetic radiation and 
electrons can behave like particles and like waves. They exhibit both wave phenomena, 
such as interference and diffraction, and particle phenomena, for example photons 
causing electron emission in the photoelectric effect or electron ‘billiard ball type’ collisions.  
 
An electron can show wave-like phenomena. In the mid-1920s G P Thomson, in 
Aberdeen, bombarded a thin metal with an electron beam and obtained a diffraction ring. 
In 1927 Davisson and Germer directed a beam of electrons onto the surface of a nickel 
crystal and observed the reflected beam. They had expected to see diffuse reflection since 
even this smooth surface would look ‘rough’ to the tiny electrons. To their surprise, they 
observed a similar pattern to X-ray diffraction from a surface. Thomson and Davisson were 
awarded the Nobel Prize in 1937 for demonstrating the wave-like properties of electrons. 
(Thomson’s father, J J Thomson, won the Nobel Prize in 1906 for discovering the electron 
as a particle.) 
 
In 1923 de Broglie suggested that since light had particle-like properties, perhaps nature 
was dualistic and particles had wave-like properties.  
 
From relativity theory, the energy of a particle with zero rest mass, e.g. a photon, is given 
by E = pc and we know that E = hf, hence p = h/λ. 
 
Thus the wave and particle are related through its momentum. 
 
For a particle p = mv and for a wave p = h/λ, giving a relationship mv = h/λ or: 
 

λ = 
p

h  where p is the momentum and h Planck’s constant (7) 

Thus we can calculate the de Broglie wavelength of a particle of velocity v.  
 
Example problems 
 
1. A neutron and an electron have the same speed.  

Which has the longer de Broglie wavelength?  
The electron, since the neutron has the larger mass. (The mass is in the 
denominator.) 

 
2. An electron microscope uses electrons of wavelength of 0.01 nm. What is the 

required speed of the electrons?  

Using λ = 
p

h  for electrons and p = mv gives: 

0.04 × 10–9 = (6.63 × 10–34)/9.11 × 10–31 × v) and  v = 1.8 × 10–7 m s–1 
 
Notice that this wavelength of 0.04 nm is very much smaller than that of blue light. Hence 
the use of electrons in microscopes can improve the resolution of the image compared to 
optical microscopes.  
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Quantum Mechanics 
‘The more you see how strangely Nature behaves, the harder it is to make a model that 
explains how even the simplest phenomena actually works.’ 
Richard Feynman 
 
Matter was thought to be ‘atomistic’ with ‘particles’ making basic interactions and the 
properties of the particles continually changing smoothly from place to place. Waves 
moved continuously from place to place. 
 
Classical mechanics could not explain the various ‘quantisation rules’, which attempted to 
give some limited agreement between observation and theory. The apparent dual wave 
particle nature of matter could not be explained.  With quantum theory these ideas needed 
to be revised.  
 
There are various forms of quantum mechanics: Heisenberg’s matrix mechanics, Erwin 
Schrödinger’s wave mechanics, Dirac’s relativistic field theory and Feynman’s sum over 
histories or amplitude mechanics.  
 
In essence quantum mechanics provides us with the means to calculate probabilities for 
physical quantities. Exact physical quantities, e.g. position or velocity, do not have unique 
values at each and every instant. 
 
‘Balls in quantum mechanics do not behave like balls in classical mechanics … an electron 
between release and detection does not have a definite value for its position. This does 
not mean that the electron has a definite position and we don't know it. It means the 
electron just does not have a position just as love does not have a colour.’ 
Strange World of Quantum Mechanics, D Styer 
 
Quantum theories incorporate the following concepts: 
 
(i) Transitions between stationary states are discrete. There is no meaning to any 

comment on a system in an intermediate state. 
 

Depending on the experiment, matter or waves may behave as a wave or a particle. 
However, in a certain way they act like both together. It is just not a sensible question 
in quantum mechanics to ask if matter is a wave or a particle. 

 
(ii) Every physical situation can be characterised by a wavefunction (or other 

mathematical formalism). This wavefunction is not directly related to any actual 
property of the system but is a description of the potentialities or possibilities within 
that situation. The wavefunction provides a statistical ensemble of similar 
observations carried out under the specified conditions. It does not give the detail of 
what will happen in any particular individual observation. The probability of a specific 
observation is obtained from the square of the wavefunction. This is an important and 
non-intuitive idea. 

 
The quantum probability aspect is very different from classical physics, where we consider 
there is an actual state and any ‘probability’ comes from our inadequate measuring or 
statistical average.  
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In the quantum domain we can only calculate probabilities. For example, we cannot state 
when a particular nucleus will decay (although we can measure a half-life) but we could 
calculate the probability of a particular nucleus decaying after a certain time. This is typical 
of the rules of quantum mechanics – the ability to calculate probabilities. 
 
Quantum mechanics has enjoyed unprecedented practical success. Theoretical 
calculations agree with experimental observations to very high precision.  
 
Quantum mechanics also reminds us that there is discreteness in nature and there are 
only probabilities. 
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Double-slit experiment 
The double-slit experiment with light shows an interference pattern. This is a standard 
experiment to demonstrate that light is a wave motion. 
 
There is a central maximum opposite the central axis between the two slits as shown in 
Figure 3. 
 

 
Figure 3 Double slit experiment 
 
In more recent years this experiment has been performed with single photons and a 
detector screen. Each photon reaches the screen and the usual interference pattern is 
gradually built up.  
 
The question is how does a single photon ‘know about’ the slit it does not pass through? 
Let us place a detector near each slit as shown in Figure 4. In this diagram the detectors 
are switched off and not making any measurements. 
 

 
Figure 4 Detectors switched off 
 
Let us now switch on detector A as shown in Figure 5. 
 

 
Figure 5 Detector switched on 
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We lose the interference effect and simply obtain a pattern for particles passing through 
two slits. We would get the same pattern if we switched on detector B instead of detector A 
or if we switched on both detectors. 
 
It seems if we ask the question ‘Where is the photon?’ or ‘Which slit does the photon pass 
through?’ and set up an experiment to make a measurement to answer that question, e.g. 
determine which slit the photon passed through, we do observe a ‘particle’ with a position 
but lose the interference effect. 
 
It appears that the single photon in some way does ‘know about’ both slits. This is one of 
the non-intuitive aspects of quantum mechanics, which suggests that a single particle can 
pass through both slits.  
 
A very similar double-slit experiment can be performed with electrons. Again we can 
arrange for only one electron to ‘pass through’ the slits at any one time. The position of the 
electrons hitting the ‘screen’ agrees with our familiar interference pattern. However, as 
soon as we attempt to find out which slit the electron passes through we lose the 
interference effect.  For electron interference the spacing of the ‘slits’ must be small.  
Planes of atoms in a crystal can be used to form the slits since electrons have a very small 
associated wavelength, the de Broglie wavelength. 
 
These observations are in agreement with quantum mechanics. We cannot measure wave 
and particle properties at the same time. 
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The Uncertainty Principle 
 
A theoretical introduction 
Using the wave theory of quantum mechanics outlined above we can produce a 
wavefunction describing the ‘state’ of the system, e.g. an electron. However, we find that it 
is not possible to determine with accuracy all the observables for the system. For example, 
we can compute the likelihood of finding an electron at a certain position, e.g. in a box. 
The wavefunction may then be effectively zero everywhere else and the uncertainty in its 
position may be very small inside the box. If we then consider its momentum wavefunction 
we discover that this is very spread out, and there is nothing we can do about it. This 
implies that in principle, if we ‘know’ the position, the momentum has a very large 
uncertainty. 
 
Consider a wave with a single frequency. Its position 
can be thought of as anywhere along the wave but its 
frequency is uniquely specified.  
Now consider a wave composed of a mixture of slightly 
different frequencies, which when added together 
produces a small ‘wave packet’. The position of this 
wave can be quite specific but its frequency is 
conversely non-unique. 

 

 
Heisenberg’s Uncertainty Principle should more appropriately be called Heisenberg’s 
Indeterminacy Principle since we can measure either x or px with very low ‘uncertainty’ but 
we cannot measure both. If one is certain, the other is indeterminate. 
 
Theoretical considerations also shows that the energy E and time t have this dual 
indeterminacy. 
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A thought experiment to illustrate Heisenberg’s Uncertainty Principle 
In classical physics it was assumed that all the attributes, such as position, momentum, 
energy etc, could be measured with a precision limited only by the experiment. 
 
In the atomic domain is this still true? 
 
Let us consider an accurate method to determine the position of an electron in a particular 
direction, for example in the x direction. The simplest method is to use a ‘light gate’, 
namely to allow a beam of electromagnetic radiation to hit the electron and be interrupted 
in its path to a detector. To increase the accuracy we can use radiation of a small 
wavelength, e.g. gamma rays. However, we note that by hitting the electron with the 
gamma rays the velocity of the electron will alter (a photon-electron collision). Now the 
velocity or momentum of the electron in the x direction will have changed. Whatever 
experiment we use to subsequently measure the velocity or momentum cannot determine 
the velocity before the electron was ‘hit’. To reduce the effect of the ‘hit’ we can decrease 
the frequency of the radiation, and lose some of the precision in the electron’s position. We 
just cannot ‘win’! 
 
Heisenberg’s Uncertainty Principle is stated as 
 

ΔxΔpx ≥ 
4

h


   (8) 

 
where Δx is the uncertainty in the position, Δpx is the uncertainty in the component of the 
momentum in the x direction and h is Planck’s constant.  
 
Quantum mechanics can show that there are other pairs of quantities that have this 
indeterminacy, for example energy and time: 

ΔEΔt ≥ 
4

h


   (9) 

where ΔE is the uncertainty in energy and Δt is the uncertainty in time. 
 
We notice that the pairs of quantities in these relationships (termed conjugate variables) 
have units that are the same as those of h, namely J s. For energy and time this is 
obvious. For position and momentum we have m kg m s–1, which we can adjust as kg m2 
s–2 s, multiplying by s–1 and s. The kg m2 s–2 is J, giving the required total unit of J s.  
 
The question ‘Does the electron have a position and momentum before we look for it?’ can 
be debated. Physicists do not have a definitive answer and it depends on the interpretation 
of quantum mechanics that one adopts. However, this is not a useful question since the 
wavefunctions give us our information and there is a limit on what we can predict about the 
quantum state. We just have to accept this. It is worth reiterating that quantum mechanics 
gives superb agreement with experimental observations.  
 
Using quantum mechanics the spectral lines for helium and other elements can be 
calculated and give excellent agreement with experimental observations. More importantly, 
quantum mechanics provides a justification for the ad hoc quantisation ‘rules’ introduced 
earlier and gives us a very useful tool to explain theoretically observed phenomena and 
make quantitative and accurate predictions about the outcomes of experiments.  
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Potential wells and quantum tunnelling 
Imagine a ball in a ‘dip’. The shape of the ups and 
downs is irrelevant.  
The ball cannot get to position Y unless it receives 
energy E = mgh. 

 

 
The ball is in a ‘potential well’ of ‘height’ mgh. This means that the ball needs energy E 
equal to or greater than mgh in order to ‘escape’ and get to position Y. 
 
In the quantum world things are a touch different, although the concept of a ‘potential well’ 
or ‘potential barrier’ is useful. 
 
Now let us consider an electron with some energy 
E on the left-hand side of a barrier of energy 
greater than E. The electron is thus confined to 
side A. It does not have enough energy to ‘get 
over’ the barrier and ‘escape’.  

 
 
 
 

 
Not so according to quantum theory. 
 
The wavefunction is continuous across a 
barrier. The amplitude is greater in region A 
but it is finite, although much smaller, outside 
region A to the right of the barrier. Although 
the probability of finding the electron in region 
A is very high, there is a finite probability of 
finding the electron beyond the barrier.  

 
 
 
 

 
The probability depends on the square of the amplitude. Hence it appears that the electron 
can ‘tunnel out’. This is called quantum tunnelling and has some interesting applications.  
  

Y h 

A 

B 
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Examples of quantum tunnelling 
 
Alpha decay 
For some radioactive elements, e.g. polonium 212, the alpha particles are held in the 
nucleus by the residual strong force and do not have enough energy to escape. However, 
because of quantum tunnelling they do escape and quantum mechanics can calculate the 
half-life. In 1928 George Gamow used quantum mechanics (Schrödinger wave equation) 
and the idea of quantum tunnelling to obtain a relationship between the half-life of the 
alpha particle and the energy of emission. Classically the alpha particle should not escape.  
 
Scanning tunnelling microscope 
A particular type of electron microscope, the scanning tunnelling microscope, has a small 
stylus that scans the surface of the specimen. The distance of the stylus from the surface 
is only about the diameter of an atom. Electrons ‘tunnel’ across the sample. In this way the 
profile of the sample can be determined. Heinrich Rohrer and Gerd Binnig were awarded 
the Nobel Prize for their work in this field in 1986. 
 
Virtual particles 
Another interesting effect of the Uncertainty Principle is the ‘sea’ of virtual particles in a 
vacuum. We might expect a vacuum to be ‘empty’. Not so with quantum theory. 
 
A particle can ‘appear’ with an energy ΔE for a time less than Δt where 

ΔEΔt ≥ 
4

h


. 

 
Do these virtual particles ‘exist’? This is not really a sensible question for quantum 
mechanics. We cannot observe them in the short time of their existence. However, they 
are important as ‘intermediate’ particles in nuclear decays and high energy particle 
collisions and if they are omitted theoretical agreement with observations may not be 
obtained. Virtual particles are important when using Feynman diagrams to solve problems. 
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Particles from Space 
 
Cosmic Rays 
The term cosmic ray is not precisely defined, but a generally accepted description is ‘high 
energy particles arriving at the Earth which have originated elsewhere’. In the early 1900s, 
radiation was detected using an electroscope. However, radiation was still detected in the 
absence of known sources. This was background radiation. 
 
Austrian physicist Victor Hess made measurements of radiation at high altitudes from a 
balloon, to try and get away from possible sources on Earth. He was surprised to find the 
measurements actually increased with altitude. At an altitude of 5000 m the intensity of 
radiation was found to be five times that at ground level. 
 
Hess named this phenomenon cosmic radiation (later to be known as cosmic rays). 
 
It was thought this radiation was coming from the Sun, but Hess obtained the same results 
after repeating his experiments during a nearly complete solar eclipse (12 April 1912), thus 
ruling out the Sun as the (main) source of radiation.  In 1936 Hess was awarded the Noble 
Prize for Physics for the discovery of cosmic rays. 
 
Tracks produced by cosmic rays can be observed using a cloud chamber.  Charles T R 
Wilson is the only Scot ever to be awarded the Nobel Prize for Physics. He was awarded it 
in 1927 for the invention of the cloud chamber. 
 
Robert Millikan coined the phrase ‘cosmic rays’, believing them to be electromagnetic in 
nature. 
 
By measuring the intensity of cosmic rays at different latitudes (they were found to be 
more intense in Panama than in California), Compton showed that they were being 
deflected by the Earth’s magnetic field and so must consist of electrically charged 
particles, i.e. electrons or protons rather than photons in the form of gamma radiation. 
 
Cosmic rays come in a whole variety of types, but the most common are protons, followed 
by helium nuclei. There is also a range of other nuclei as well as individual electrons and 
gamma radiation (see Table 1). 
 
Table 1 Composition of cosmic rays 
 

Nature Approximate percentage of all 
cosmic rays 

Protons 89 

Alpha particles 9 

Carbon, nitrogen and oxygen 
nuclei 

1 

Electrons less than 1 

Gamma radiation less than 0.1 
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The energies of cosmic rays cover an enormous range, with the most energetic having 
energies much greater than those capable of being produced in current particle 
accelerators. 
 
The highest energies produced in particle accelerators are of the order of 1 
teraelectronvolt (1012 eV).  Cosmic rays have been observed with energies ranging from 
109 to 1020 eV. Those with energies above 1018 eV are referred to as ultra-high-energy 
cosmic rays (UHECRs). 
 
The ‘Oh-my-God’ (OMG) particle with energy of 3 × 1020 eV was recorded in Utah in 1991.  
 
Converting to joules (J), 3 × 1020 eV = 3 × 1020 × 1.6 × 10–19 J = 48 J, ie ~50 J.  
 
That is enough energy to throw a throw a 25 kg mass (e.g. a bag of cement) 2 m vertically 
upwards. It is also approximately equal to the kinetic energy of a tennis ball served at 
about 100 mph by Andy Murray. 
 
Order of magnitude open-ended question opportunity here:  
mass = 60 g = 0.06 kg, speed = 45 m s–1,  
kinetic energy = 0.5 × 0.06 × 45 × 45 = 60 J 
 
The OMG particle was probably a proton and as such had about 40 million times the 
energy of the most energetic protons ever produced in an Earth-based particle accelerator. 
 
Such UHECRs are thought to originate from fairly local (in cosmological terms) distances, 
i.e. within a few hundred million light years. This is because were they to originate from 
further away it would be hard to understand how they get all the way here at all, since the 
chances are they would have interacted with Cosmic Microwave Background Radiation 
(CMBR) photons along the way, producing pions. 
 
The lowest energy cosmic rays come from the Sun and the intermediate energy ones are 
presumed to be created within our galaxy, often in connection with supernovae. The main 
astrophysics (rather than particle physics) to come from the study of cosmic rays concerns 
supernovae since they are believed to be the main source of cosmic rays. 
 
However, the origin of the highest energy cosmic rays is still uncertain. Active galactic 
nuclei (AGN) are thought to be the most likely origin for UHECRs. A group of cosmologists 
(including Martin Hendry from the University of Glasgow) are working on the statistical 
analysis of apparent associations between the incoming direction of the highest energy 
cosmic rays and active galaxies. 
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Interaction with the Earth’s atmosphere 
When cosmic rays reach the Earth, they interact with the Earth’s atmosphere, producing a 
chain of reactions resulting in the production of a large number of particles known as a 
cosmic air shower (Figure 1). Air showers were first discovered by the French scientist 
Pierre Auger in 1938. Analysing these showers allows the initial composition and energies 
of the original (primary) cosmic rays to be deduced. 
 
When cosmic rays from space (primary cosmic rays) strike particles in the atmosphere 
they produce secondary particles, which go on to produce more collisions and particles, 
resulting in a shower of particles that is detected at ground level. The primary cosmic rays 
can usually only be detected directly in space, for example by detectors on satellites, 
although very high energy cosmic rays, which occur on rare occasions, can penetrate 
directly to ground level. 

 
Figure 1 Air shower. 
 
Detection 
Consequently there are two forms of detector: those that detect the air showers at ground 
level and those located above the atmosphere that detect primary cosmic rays. 
 
Cherenkov radiation 
Air shower particles can travel at relativistic speeds. Although relativity requires that 
nothing can travel faster than the speed of light in a vacuum, particles may exceed the 
speed of light in a particular medium, for example water. Such particles then emit a beam 
of Cherenkov radiation – the radiation that causes the characteristic blue colour in nuclear 
reactors. (This is a bit like the optical equivalent of a sonic boom.) 
 
Atmospheric fluorescence 
When charged particles pass close to atoms in the atmosphere, they may temporarily 
excite electrons to higher energy levels. The photons emitted when the electrons return to 
their previous energy levels can then be detected. 
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The Pierre Auger observatory in Argentina was set up to study high-energy cosmic rays. It 
began operating in 2003 and at that time was the largest physics experiment in the world. 
It is spread over several thousand square miles and uses two basic types of detectors: 

 1600 water tanks to detect the Cherenkov effect 

 four detectors of atmospheric fluorescence. 
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The Solar Wind and Magnetosphere 
 
Structure of the Sun 
The interior of the Sun consists of three main regions: 
1. the core, within which nuclear fusion takes place 
2. the radiative zone, through which energy is transported by photons 
3. the convective zone, where energy is transported by convection. 
 
The extended and complex solar atmosphere begins at the top of the convective zone, 
with the photosphere. 
 
The photosphere is the visible surface of the Sun and appears smooth and featureless, 
marked by occasional relatively dark spots, called sunspots. Moving outwards, next is the 
chromosphere. Sharp spicules and prominences emerge from the top of the 
chromosphere. 
 
The corona (from the Greek for crown) extends from the top of the chromosphere. The 
corona is not visible from Earth during the day because of the glare of scattered light from 
the brilliant photosphere, but its outermost parts are visible during a total solar eclipse. 
 
The depth of each layer relative to the radius of the Sun (Rs) is shown in Figure 2. The 
photosphere is about 330 km deep (0.0005Rs) and the chromosphere is about 2000 km 
(0.003Rs) deep. 

 
Figure 2 Structure of the Sun. 
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Coronagraphs are special telescopes that block out the light from the photosphere to allow 
the corona to be studied. These are generally used from mountain tops (where the air is 
thin) and from satellites. They have been able to detect the corona out beyond 20Rs, which 
is more than 10% of the way to Earth. 
 
The corona is permeated by magnetic fields. In particular there are visible loops along 
which glowing ionised gaseous material can be seen to travel. They have the shape of 
magnetic field lines and begin and end on the photosphere. 
 
Information about magnetic fields in the corona has come from the study of emitted X-rays, 
obtained from satellites and space stations. The corona is the source of most of the Sun’s 
X-rays because of its high temperature, which means it radiates strongly at X-ray 
wavelengths. The corona’s X-ray emission is not even, however, with bright patches and 
dark patches. The dark areas hardly emit any X-rays at all and are called coronal holes.  
 

 
Figure 3 Coronal hole. 
 
The Solar and Heliospheric Observatory (SOHO) is a project of international collaboration 
between the European Space Agency (ESA) and the National Aeronautics and Space 
Administration (NASA) to study the Sun from its deep core to the outer corona and the 
solar wind. 
 
In 2006 a rocket was launched from Cape Canaveral carrying two nearly identical 
spacecraft. Each satellite was one half of a mission entitled Solar TErrestrial RElations 
Observatory (STEREO) and they were destined to do something never done before – 
observe the whole of the Sun simultaneously. With this new pair of viewpoints, scientists 
will be able to see the structure and evolution of solar storms as they blast from the Sun 
and move out through space. 
 
 
  

http://sohowww.nascom.nasa.gov/
http://www.esa.int/
http://www.nasa.gov/
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The solar wind 
There is a continual flow of charged particles emanating from the Sun because of the high 
temperature of the corona. This gives some particles sufficient kinetic energy to escape 
from the Sun’s gravity. This flow is called the solar wind and is plasma composed of 
approximately equal numbers of protons and electrons (i.e. ionised hydrogen). It can be 
thought of as an extension of the corona itself and as such reflects its composition. The 
solar wind also contains about 8% alpha particles (i.e. helium nuclei) and trace amounts of 
heavy ions and nuclei (C, N, O, Ne, Mg, Si, S and Fe). 
 
The solar wind travels at speeds of between 300 and 800 kms–1, with gusts recorded as 
high as 1000 km–1 (2.2 million miles per hour). 
 
Comet tails 
Although it was known that solar eruptions ejected material that could reach the Earth, no-
one suspected that the Sun was continually losing material regardless of its apparent 
activity. It had been known for a long time that comet tails always pointed away from the 
Sun, although the reason was unknown. Ludwig Biermann (of the Max Planck Institute for 
Physics in Göttingen) made a close study of the comet Whipple-Fetke, which appeared in 
1942. It had been noted that comet tails did not point directly away from the Sun. 
Biermann realised this could be explained if the comet was moving in flow of gas 
streaming away from the Sun. The comet’s tail was acting like a wind-sock, In the early 
1950s Biermann concluded that even when the Sun was quiet, with no eruptions or 
sunspots, there was still a continuous flow of gas from it. 
 
In 1959, the Russian space probe Luna 1 made the first direct observation and 
measurement of the solar wind. The probe carried different sets of scientific devices for 
studying interplanetary space, including a magnetometer, Geiger counter, scintillation 
counter and micrometeorite detector.  It was the first man-made object to reach escape 
velocity from Earth. 
 
Coronal holes 
The magnetic field lines from coronal holes don’t loop back onto the surface of the corona. 
Instead they project out into space like broken rubber bands, allowing charged particles to 
spiral along them and escape from the Sun. There is a marked increase in the solar wind 
when a coronal hole faces the Earth. 
 
Solar flares 
Solar flares are explosive releases of energy that radiate energy over virtually the entire 
electromagnetic spectrum, from gamma rays to long wavelength radio waves. They also 
emit high-energy particles called solar cosmic rays. These are composed of protons, 
electrons and atomic nuclei that have been accelerated to high energies in the flares. 
Protons (hydrogen nuclei) are the most abundant particles followed by alpha particles 
(helium nuclei). The electrons lose much of their energy in exciting radio bursts in the 
corona. These generally occur near sunspots, which leads to the suggestion they are 
magnetic phenomena. It is thought that magnetic field lines become so distorted and 
twisted that they suddenly snap like rubber bands. This releases a huge amount of energy, 
which can heat nearby plasma to 100 million kelvin in a few minutes or hours. This 
generates X-rays and can accelerate some charged particles in the vicinity to almost the 
speed of light. 
 

http://en.wikipedia.org/wiki/Luna_1
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The energies of solar cosmic ray particles range from millielectronvolts (10–3 eV) to tens of 
gigaelectronvolts (1010 eV). 
 
The highest energy particles arrive at the Earth within half an hour of the flare maximum, 
followed by the peak number of particles 1 hour later. 
 
Particles streaming from the Sun after solar flares or other major solar events can disrupt 
communications and power delivery on Earth. 
 
A major solar flare in 1989:  

 caused the US Air Force to temporarily lose communication with over 2000 satellites 

 induced currents in underground circuits of the Quebec hydroelectric system, causing it 
to be shut down for more than 8 hours. 
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The solar cycle 
All solar activities show a cyclic variation with a period of about 11 years. 
 
Sunspots 
When an image of the sun is focussed on a screen dark spots called sunspots are often 
visible. By observing over a number of days they will be seen to move (due to the rotation 
of the Sun) and also change in size, growing or shrinking. The sunspots look dark because 
they are cooler than the surrounding photosphere. A large group of sunspots is called an 
active region and may contain up to 100 sunspots. 
 
The general pattern of the movement of sunspots (individual sunspots may appear and 
disappear – short-lived ones only lasting a few hours whereas others may last for several 
months) shows that the Sun is rotating with an average period of about 27 days with its 
axis of rotation tilted slightly to the plane of the Earth’s orbit. 
 
Unlike the Earth, the Sun does not have a single rotation period. The period is 25 days at 
the Sun’s equator and lengthens to 36 days near the poles. Sections at different latitudes 
rotate at different rates and so this is called differential rotation. 
 
The three main features of the solar cycle are: 
 
1. the number of sunspots 
2. the mean latitude of sunspots 
3. the magnetic polarity pattern of sunspot groups. 
 
The number of sunspots increases and decreases with an 11-year cycle, the mean solar 
latitude at which the sunspots appear progresses towards the solar equator as the cycle 
advances and the magnetic polarity pattern of sunspot groups reverses around the end of 
each 11-year cycle (making the full cycle in effect 22 years). 
 
The magnetosphere 
The magnetosphere is the part of the Earth’s atmosphere dominated by the Earth’s 
magnetic field. This region also contains a diffuse plasma of protons and electrons. The 
magnetic field resembles that of a bar magnet, tipped at about 11° to the Earth’s rotational 
axis. However, the magnetic field is believed to be generated by electric currents in 
conducting material inside the Earth, like a giant dynamo. Geological evidence shows that 
the direction of the Earth’s magnetic field has reversed on several occasions, the most 
recent being about 30,000 years ago. This lends evidence for the ‘dynamo’ model as the 
reversal can be explained in terms of changes in the flow of conducting fluids inside the 
Earth. 
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Interaction of the solar wind with the Earth’s magnetic field 
The solar wind interacts with the magnetosphere and distorts its pattern from the simple 
bar magnet model outlined above. The Earth’s magnetic field also protects it from the solar 
wind, deflecting it a bit like a rock deflecting the flow of water in a river. The boundary 
where the solar wind is first deflected is called the bow shock. The cavity dominated by the 
Earth’s magnetic field is the magnetosphere, see Figures 4 and 5. 
 

 
 
Figure 4 The magnetosphere as visualised in 1962. 
 
High-energy particles from the solar wind that leak into the magnetosphere and become 
trapped to form the Van Allen belts of radiation. These are toroidal in shape and concentric 
with the Earth’s magnetic axis. There are two such belts: the inner and the outer. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5 Current perception of the Earth’s magnetosphere. 
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The inner Van Allen belt lies between one and two Earth radii from its axis, (RE< inner belt 
< 2RE) then there is a distinct gap followed by the outer belt lying between three and four 
Earth radii (3RE < outer belt < 4RE ). The inner belt traps protons with energies of between 
10 and 50 MeV and electrons with energies greater than 30 MeV. The outer belt contains 
fewer energetic protons and electrons. 
 
The charged particles trapped in the belts spiral along magnetic field lines and oscillate 
back and forth between the northern and southern mirror points with periods between 0.1 
and 3 seconds as shown in Figure 6 
 
 
 

 
 
 
Figure 6 Van Allen belt. 
 
Particles in the inner belt may interact with the thin upper atmosphere to produce the 
aurorae. These result from the excitation of different atoms in the atmosphere, each of 
which produces light with a characteristic colour due to the different energy associated 
with that atomic transition.   
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Charged particles in a magnetic field 
The force acting on a charge q, moving with velocity v through a magnetic field B is given 
by: 
 

F = qvB 
 
where F, v and B are all mutually at right angles to each other. 
 
Circular motion 
As F is always at right angles to v, the particle will move with uniform motion in a circle, 
where F is the central force (assuming any other forces are negligible), so: 
 

𝐹 =  
𝑚𝑣2

𝑟
 

 
Equating the magnetic force to the central force we get: 
 

𝑚𝑣2

𝑟
 =   𝑞𝑣𝐵 

so 

𝑟 =  
𝑚𝑣

𝑞𝐵
 

 
 
Helical motion 
If a charged particle crosses the magnetic field lines at an angle, then its velocity can be 
resolved into two orthogonal components: one perpendicular to the field and the other 
parallel to it.  
 
The perpendicular component provides the central force, which produces uniform circular 
motion as shown above. The component parallel to the magnetic field does not cause the 
charge to experience a magnetic force so it continues to move with constant velocity in 
that direction, resulting in a helical path. 
 
This can be illustrated using a dual-beam electron tube, with a coil positioned at the front 
of the tube so it produces an axial magnetic field, see Figures 7 and 8.  
 

 
Figure 7 Coil at front of dual beam tube.  
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Figure 8 Helical motion of electron beam. 
 
 
Aurorae 
The aurora (aurora borealis in the Northern hemisphere – the northern lights; aurora 
australis in the southern hemisphere – southern lights) are caused by solar wind particles 
which penetrate the Earth’s upper atmosphere, usually within 20° of the north or south 
poles. Between 80 and 300 km above the Earth’s surface (aircraft fly at around 10 km 
altitude) these particles strike nitrogen molecules and oxygen atoms, causing them to 
become excited and subsequently emit light in the same way as happens in electric 
discharge lamps. The most common colours, red and green, come from atomic oxygen, 
and violets come from molecular nitrogen. 
 

 
 
Figure 9 Aurora borealis. 
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Simple Harmonic Motion (SHM) 
If an object is subject to a linear restoring force, it performs an oscillatory motion termed 
‘simple harmonic’. Before a system can perform oscillations it must have (1) a means of 
storing potential energy and (2) some mass which allows it to possess kinetic energy. In 
the oscillating process, energy is continuously transformed between potential and kinetic 
energy. 
 
Note: any motion which is periodic and complex (i.e. not simple!) can be analysed into its 
simple harmonic components (Fourier Analysis). An example of a complex waveform 
would be a sound wave from a musical instrument.  
 
Examples of SHM 

Example and Diagram Ep stored as: Ek possesed by 

moving: 

mass on a coil spring    

                                                                         

 
 
 
elastic energy of  
spring 

 
 
 
mass on spring 

 

 
 
 
potential energy 
(gravitational) of 
bob 

 
 
 
mass of the bob 
 

 

 
 
 
elastic energy of 
the springs 

 
 
 
mass of the trolley 

 

 
 
potential energy 
(gravitational) of 
the tube 

 
 
mass of the tube 

oscilation

spring

mass

bob

string

oscillation

 
  

simple  
pendulum

oscillation

trolley spring

trolley tethered between springs

oscillation

weighted tube floating in a liquid

liquid
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Note that for the mass oscillating on the spring, there is always an unbalanced force 
acting on the mass and this force is always opposite to its direction of motion.  The 
unbalanced force is momentarily zero as the mass passes through the rest position.  
 
To see this, consider the following: when the mass is moving upwards past the rest 
position, the gravitational force (downwards) is greater than the spring force.  Similarly 
when moving downwards past the rest position, the spring force (upwards) is greater than 
the gravitational force downwards. 
 
This situation is common to all SHMs.  The force which keeps the motion going is 
therefore called the restoring force. 
 
Definition of Simple Harmonic Motion 
When an object is displaced from its equilibrium or at rest position, and the unbalanced 
force is proportional to the displacement of the object and acts in the opposite direction, 
the motion is said to be simple harmonic. 
 
Graph of Force against displacement for SHM  
 
  F  =  - kx 
 
F is the restoring force (N) 

k is the force constant (N m-1) 
x is the displacement (m) 
 
The negative sign shows the direction 
of vector F is always opposite to vector x. 
 

 
 
If we apply Newton’s Second Law in this situation the following alternative definition in 
terms of acceleration as opposed to force is produced. 
 

F = ma = m 
d2x

dt2
   =  - kx      a = -  

k
m

  x thus   
d2x

dt2
   = -  

k
m

  x 

 
Remember that k is a force constant which relates to the oscillating system.  

The constant, 
k
m

   is related to the period of the motion by 2 = 
k
m

    ,   = 
T

2
 

 
This analysis could equally well have been done using the y co-ordinate. 
 

Thus an equivalent expression would be    y
dt

yd 2

2

2

 .   

  

x/m

F/N

F = -kx

graph

0
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Kinematics of SHM 
Point P is oscillating with SHM between two fixed points R and S.  The amplitude of the 
oscillation is therefore ½ RS and this is given the symbol a.  The displacement y is the 
vector OP.  
 

  

R
P

S

y

O

O is the origin, position

of zero displacement

P is an instantaneous

position at displacement y

 oscillation

positive direction is

 
 
The period, T, of the motion is the time taken to complete one oscillation, e.g. path O->R-
>O ->S->O. 
 
The frequency, f, is the number of oscillations in one second. 

    f = 
1
T

   and because   = 
T

2
    f 2  

 
Solutions of Equation for SHM 

The equation    
d2y

dt2
  = -2y   could be solved using integration to obtain equations for 

velocity v and displacement y of the particle at a particular time t. However, the calculus 
involves integration which is not straightforward.  We will therefore start with the solutions 
and use differentiation. The possible solutions for the displacement y at time t depend on 
the initial conditions and are given by: 

y = a cos t, if y = 0 at t = 0                   and                       y = a sin t, if y = a at t = 0   
Acceleration  

tata
dt

d

dt

dy
 sincos   

tata
dt

d

dt

yd
 cossin 2

2

2

  

As y
dt

yd
sotay 2

2

2

......cos    

tata
dt

d

dt

dy
 cossin   

tata
dt

d

dt

yd
 sincos 2

2

2

  

As y
dt

yd
sotay 2

2

2

......sin    

 
Velocity 

 

tata
dt

d
v

dt

dy
 sincos   

tav  2222 sin and tay 222 cos  
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2

2
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2


a

y

a

v
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So     
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dt

d
v
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dy
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y

a
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Linking SHM with Circular Motion  
This allows us to examine the mathematics of the motion and is provided for interest. If the 
point Q is moving at constant speed, v, in a circle, its projection point P on the  y  axis will 

have  displacement  y = a cos t   
 

 

  
 
 positive direction of y is upwards 
 

  note that sin  = 
QP
OQ

  

     sin  = 
a2 - y2

a
  

 

 

The velocity of point P is: tata
dt

d

dt

dy
v p  sincos   (assume P is moving down)  

when y = 0,  = 
2


 and sin  = 1          av max  

This occurs as P goes through the origin in either direction. 
 

when y = ± a,  = 0 or  and sin  = 0         0min v  

 
This occurs as P reaches the extremities of the motion. 
 

The acceleration of point P is: tata
dt

d

dt

yd
a p  cossin 2

2

2

  

 

when y = 0,  = 
2


 and cos  = 0         0min a  

This occurs as P goes through the origin in either direction. 
 

when y = ±a,  = 0 or  and cos  = 1        2

max aa   

 
This occurs as P reaches the extremities of the motion. 
 
The acceleration is negative when the displacement, y, is positive and vice versa; i.e. they 
are out of phase, see graphs of motion below.  Knowledge of the positions where the 
particle has maximum and minimum acceleration and velocity is required 
 
  

v
Q



P

a
y

O

radius OQ sweeps out     rad s-1
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To understand these graphs it is helpful if you see such graphs being generated using a 
motion sensor.  In particular, pay close attention to the phases of the graphs of the motion 
and note that the basic shape is that of the sine/cosine graphs. 
 
Displacement-time     Summary of Equations 

 

 
 

tay cos  

Velocity-time  

 

 
 

22 yav    

Acceleration-time  

 

 
 

y
dt

yd
a 2

2

2

  

 
 

 

Note that this form, acceleration = - 2 y, is consistent with our definition of SHM 2 is a 
positive constant.  This implies that the sine and cosine equations must be solutions of the 
motion. 
 
Compare this constantly changing acceleration with situation where only uniform 
acceleration was considered. 
The equation used in a particular situation depends on the initial conditions. 

Thus:  if y = 0 at time t = 0   use y = a sin  t 

if  y = a at time t = 0   use y = a cos  t 
 

Another possible solution for SHM is:  y = a sin( t + ) where  is known as the phase 
angle. 
  

y

t

v

t

a

t
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Example 
An object is vibrating with simple harmonic motion of amplitude 0.02 m and frequency  5.0 
Hz. Assume that the displacement of the object, y = 0 at time, t = 0 and that it starts 
moving in the positive y-direction. 
(a) Calculate the maximum values of velocity and acceleration of the object. 
(b) Calculate the velocity and acceleration of the object when the displacement is 0.008 

m. 
(c) Find the time taken for the object to move from the equilibrium position to a 

displacement of 0.012 m. 
 
Solution 

Initial conditions require; y = a sin t;  v = a cos t;   and  acc = - x  

  f  =  5 Hz     = 2f  =  31.4 rad s-1 
 

 (a) vmax  =  a  =  31.4 x 0.02  =  0.63 m s-1 

  accmax  =  - 2 a = -(31.4)2 x 0.02  =  -19.7 m s-2 

 

 (b) v = ±  a2 - y2   =  ±  31.4 0.022 - 0.0082   =  ± 0.58 m s-1 

  acc = - 2 y = - 31.42 x 0.008  =  - 7.9 m s-2 
 

 (c) use   y = a sin t ;   0.012  =  0.02 sin 31.4t     (when y  =  0.012 m) 

  sin 31.4 t  =  
0.012
0.02

   =  0.6  giving  31.4 t  =  0.644  and t = 
0 644
314
.

.
 

  Thus       t  =  0.0205 s        (Remember that angles are in radians) 
 
Proof that the Motion of a Simple Pendulum approximates to SHM 
The sketches below show a simple pendulum comprising a point mass, m, at the end of an 
inextensible string of length L. The string has negligible mass.  

mg

L

x



mgsin
 

 
The restoring force F on the bob is F = - mg sin 

If the angle   is small (less than about 10°) then sin  =   in radians and  =   
x

L
 

Then   F = - mg  = - mg 
x
L

     Thus  F = -   
mg
L

  x 

 
The restoring force therefore satisfies the conditions for SHM for small displacements. 

Then acceleration is a = - 
g
L
  x which if compared with a = - 2 x gives 2 = 

g
L
   ( = 2f)  

     f = 
1

2
  

g
L

  and the period of the pendulum  T =  2
L
g

  

mgcos

mgsin

Tension in s tring





mg
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Energy Equations for SHM 
Consider the particle moving with simple harmonic motion below. The particle has 

maximum amplitude a and period T = 


2
 .

  
 
Kinetic energy equation for the particle 

Ek  = 
1
2
  m v2      = 

1
2

   m [±  a2 - y2  ]2  =>    Ek = 
1
2

 m 2 (a2 - y2)   

 
 
Potential energy equation for the particle 
When at position O the potential energy is zero, (with reference to the equilibrium position) 
and the kinetic energy is a maximum. 

The kinetic energy is a maximum when y = 0:    Ekmax =  
1
2
  m  2 a2  

At point O, total energy E  =  Ek  +  Ep  =  
1
2
  m  2 a2  + 0   

E  =  
1
2
  m  2 a2   or   E  =  

1
2
  k a2 because 2 = 

k
m

  

 
The total energy E is the same at all points in the motion.   
 
Thus for any point on the swing:  as above E  =  Ek  +   Ep 

1
2
  m  2 a2    =   

1
2
   m  2 (a2  -  y2)   +   Ep =>     Ep  =  

1
2
 m 2 y2       

 
The graph below shows the relation between potential energy, Ep, kinetic energy Ek, and 

the total energy of a particle during SHM as amplitude y changes from  - a to + a. 
 

 

y

O

particle

- a

pos itive direction  
 
of y is
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Example on energy and SHM 
The graph below shows how the potential energy, Ep, of an object undergoing SHM, 

varies with its displacement, y.  The object has mass 0.40 kg and a maximum amplitude of 
0.05 m. 
 

 
(a) (i)Find the potential energy of the object when it has a displacement of  0.02 m. 

 (ii)Calculate the force constant, k for the oscillating system. (k should have unit  N m-1). 
(b) Find the amplitude at which the potential energy equals the kinetic energy. 
 
Solution  
(a) (i) From graph  Ep = 0.10 J 

 (ii)      Ep  =  
1
2  k y2  

            0.1  =  
1
2

  k (0.02)2 

          k  =  
0.2

 (0.02)2
   =  500 N m-1 

 
(b)                Ep  =  Ek 

       
1
2

  k y2   =    
1
2

  m 2( a2 - y2 )    

           =  
1
2  k (a2 - y2)       since   2 = 

k
m

  

       y2  =  a2 - y2  or   2 y2 = a2 

       y   =  
a

2
    when  Ep = Ek 

       y =  
0.05

2
    =  0.035 m 
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Damping of Oscillations 
Oscillating systems, a mass on a spring, a simple pendulum, a bobbing mass in water, all 
come to rest eventually.  We say that their motion is damped.  This means that the 
amplitude of the motion decreases to zero because energy is transformed from the 
system.  A simple pendulum takes a long time to come to rest because the frictional effect 
supplied by air resistance is small - we say that the pendulum is lightly damped.  A tube 
oscillating in water comes to rest very quickly because the friction between the container 
and the water is much greater - we say that the tube is heavily damped.   
 
If the damping of a system is increased there will be a value of the frictional resistance 
which is just sufficient to prevent any oscillation past the rest position - we say the system 
is critically damped.  Systems which have a very large resistance, produce no oscillations 
and take a long time to come to rest are said to be overdamped.  In some systems 
overdamping could mean that a system takes longer to come to rest than if underdamped 
and allowed to oscillate a few times.  
 
An example of damped oscillations is a car shock absorber which has a very thick oil in the 
dampers.  When the car goes over a bump, the car does not continue to bounce for long.  
Ideally the system should be critically damped.  As the shock absorbers get worn out the 
bouncing may persist for longer.  
 
The graphs below give a graphical representation of these different types of damping. 
 
Damped oscillations 

 
Critically damped 

 

Overdamped  

 

  

y

t

y

t

y

t
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Waves 
 
Wave Motion 
In a wave motion energy is transferred from one position to another with no net transport 
of mass.  
Consider a water wave where the movement of each water particle is at right angles 
(transverse) to the direction of travel of the wave.  During the wave motion each particle, 
labelled by its position on the x-axis, is displaced some distance y in the transverse 
direction.  In this case, "no net transfer of mass" means that the water molecules 
themselves do not travel with the wave - the wave energy passes over the surface of the 
water, and in the absence of a wind/tide any object on the surface will simply bob up and 
down.   
 
The Travelling Wave Equation 
The value of the displacement y depends on which particle of the wave is being 
considered.  It is dependent on the x value, and also on the time t at which it is considered.  
Therefore y is a function of x and t giving y = f(x,t).  If this function is known for a particular 
wave motion we can use it to predict the position of any particle at any time. 
 
Below are 'snapshots' of a transverse wave taken at different times showing how the 
displacement of different particles varies with position x. 
 
 
 
 
 
 
 
 
The following diagram shows the movement of one particle on the wave as a function of 
time. 
 

  
Initial condition at the origin: 
y = 0 when t = 0. 
 
 
 

 
For a wave travelling from left to right with speed v, the particle will be performing SHM in 
the y-direction.   
 
The equation of motion of the particle will be:  

 y = a sin t     where a is the amplitude of the motion. 
 
The displacement of the particle is simple harmonic.  The sine or cosine variation is the 
simplest description of a wave.   
 

When y = 0 at t = 0 the relationship for the wave is y = a sin t, as shown above.  

When y = a at t = 0 the relationship for the wave is y = a cos t.  
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Deriving the travelling wave equation 
Consider a snapshot of the wave as shown below. 
 

 

 
 

 
 
 

 
The time, t, for the wave disturbance 
to travel from A (x = 0) to B  (x = x) 

is  
x
v

 . 

 

Consider particle A at position x = 0. 

The equation of motion of particle A is given by      y = a sin t 
where t is the time at which the motion of particle A is observed. 
 
Now consider particle B at position x = x and the time t = t. 
Since wave motion is a repetitive motion: 

motion of particle B (x = x, t = t)  =  motion of particle A (x = 0, t = 
x
v

), 

[i.e. the motion of particle B = motion of particle A at the earlier time of t = 
x
v

]. 

General motion of particle A is given by  y = a sin t, but in this case t = t − 
x
v

 

hence y = a sin t − 
x
v

). 

Motion of particle B (x = x, t = t) is also given by y = a sin t − 
x
v

). 

In general: y = a sin t - 
x
v

)      also   f    and v = f   

 y = a sin 2f(t - 
x
f

) which gives 

 
 

   y = a sin 2 (ft - 
x


  )      

 
for a wave travelling from left to right  
in the positive x-direction.  
 

 
The equation of a wave travelling right to left in the negative x-direction is 

   y = a sin 2( ft + 
x


   ).  

 
The Intensity of a Wave 
The intensity of a wave is directly proportional to the square of its amplitude. 

intensity  a2 

 
Longitudinal and transverse waves 
With transverse waves, as in water waves, each particle oscillates at right angles to the 
direction of travel of the wave.  In longitudinal waves, such as sound waves, each particle 
vibrates along the direction of travel of the wave. 

direction 
of wave 
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Principle of Superposition of Waveforms  
Travelling waves can pass through each other without being altered.  If two stones are 
dropped in a calm pool, two sets of circular waves are produced.  These waves pass 
through each other.  However at any point at a particular time, the disturbance at that point 
is the algebraic sum of the individual disturbances.  In the above example, when a ‘trough’ 
from one wave meets a ‘crest’ from the other wave the water will remain calm. 
 
A periodic wave is a wave which repeats itself at regular intervals. All periodic waveforms 
can be described by a mathematical series of sine or cosine waves, known as a Fourier 
Series.  For example a saw tooth wave can be expressed as a series of individual sine 
waves. 

 y(t) = - 
1


  sin t  -  

1

2
  sin 2t  -  

1

3
  sin 3t  -  ............. 

The graph below shows the first four terms of this expression. 
 
 
 
 
 
 
 
 
 
 
 
 
 
When all these terms are superimposed (added together) the graph below is obtained.  
Notice that this is tending to the sawtooth waveform.  If more terms are included it will 
have a better saw tooth form. 
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Phase Difference 
A phase difference exists between two points on the same wave. 
 
Consider the snapshots below of a wave travelling to the right in the positive  
x-direction. 
 
 
 
 
 
 
 

Points O and D have a phase difference of 2 radians. 
They are both at zero displacement and will next be moving in the negative direction.  

They are separated by one wavelength (). 
 

Points O and B have a phase difference of  radians.   
They both have zero displacement but B will next be going positive and O will be going 

negative. They are separated by /2. Notice that points A and B have a phase difference 

of /2. 
 
The table below summarises phase difference and separation of the points. 
 

Phase difference Separation of points 

0 0 

 /4 

 /2 

  

 

Notice that 
phase difference

separation of points
 =  

2


  =  constant. 

 

If the phase difference between two particles is  when the separation of the particles is x,  

then 


x
 = 

2


. 

 
In general, for two points on a wave separated by a distance x the phase difference is 
given by: 

  =  2  
x


    

 

where   is the phase angle in radians 
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Example 
A travelling wave has a wavelength of 60 mm.  A point P is 75 mm from the origin and a 
point Q is 130 mm from the origin. 
(a)  What is the phase difference between P and Q? 
(b)  Which of the following statements best describes this phase difference: 
  ‘almost completely out of phase’;   ‘roughly ¼ cycle out of phase’;  

‘almost in phase’. 
 
Solution 
(a) separation of points  =  130 - 75  =  55 mm   =  0.055 m 

 phase difference       =   2
0 055
0 060
.
.

  =  5.76 radians 

(b) P and Q are separated by 55 mm which is almost one wavelength, hence they are 
‘almost in phase’.  Notice that 5.76 radians is 330°, which is close to 360°. 
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Stationary Waves 
A stationary wave is formed by the interference between two waves, of the same 
frequency and amplitude, travelling in opposite directions.  For example, this can happen 
when sound waves are reflected from a wall and interfere with the waves approaching the 
wall. 
 
A stationary wave travels neither to the right nor the left, the wave ‘crests’ remain at fixed 
positions while the particle displacements increase and decrease in unison.  
 
  

 
A - antinodes 
 
N - nodes 
 
 
 

 
There are certain positions which always have zero amplitude independent of the time we 
observe them; these are called nodes.  
 
There are other points of maximum amplitude which are called antinodes. 

Note that the distance between each node and the next node is 



   and, that the distance 

between each antinode and the next antinode is  



  .  

 
Use of standing waves to measure wavelength 
Standing waves can be used to measure the wavelength of waves.  The distance across a 
number of minima is measured and the distance between consecutive nodes determined 
and the wavelength calculated.  This method can be used for sound waves or microwaves. 
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Formula for standing waves 
Consider the two waves y1 and y2 travelling in the opposite direction, where 

  

  y1 = a sin 2( ft - 
x


  )  and  y2 = a sin 2( ft + 

x


  ) 

 
When these two waves meet the resultant displacement y is given by 
  

  y =  y1  +  y2    =  a sin 2( ft - 
x


  )  +  a sin 2( ft + 

x


  ) 

  y = 2 a sin 2ft cos 
2x

 
             (using a sin P + a sin Q = 2a sin

P + Q

2
cos

P - Q

2
) 

  Giving    y = 2 a sin t cos 
2x

 
     

 
Notice that the equation is a function of two trigonometric functions, one dependent on 
time t and the other on position  x. Consider the part which depends on position.  We can 

see that there are certain fixed values of x for which cos 
2x

 
    is equal to zero. 

These are   x =  


4
  , 

3

4
  ,  

5

4
  ,  etc.  

 
This shows that there are certain positions where y = 0 which are independent of the time 
we observe them - the nodes.  
 
The positions at which the amplitude of the oscillation is maximum are given by 
 

 cos 
2x

 
   = 1, that is   x =  0 , 



2
 ,   , 

3

2
  ,  etc. 

 
These are points of maximum amplitude - the antinodes. 
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Interference - Division of Amplitude 
 
Producing interference 
Interference of waves occurs when waves overlap.  There are two ways to produce an 
interference pattern for light: division of amplitude and division of wavefront.  Both of these 
involve splitting the light from a single source into two beams.  We will consider division of 
amplitude first and division of wavefront in the next section. 
 
Division of amplitude 
This involves splitting a single light beam into two beams, a reflected beam and a 
transmitted beam, at a surface between two media of different refractive index.  In some 
cases multiple reflections can occur and more than two beams are produced.  Before we 
consider specific examples we need to consider some general properties of interference.  
 
Coherent sources 
Two coherent sources must have a constant phase difference.  Hence they will have the 
same frequency. 
 
To produce an interference pattern for light waves the two, or more, overlapping beams 
always come from the same single source.  When we try to produce an interference 
pattern from two separate light sources it does not work because light cannot be produced 
as a continuous wave.  Light is produced when an electron transition takes place from a 
higher energy level to a lower energy level in an atom.  The energy of the photon emitted 

is given by E = hf where E is the difference in the two energy levels, f is the frequency of 
the photon emitted and h is Planck’s constant.  Thus a source of light has continual 
changes of phase, roughly every nanosecond, as these short pulses of light are produced.  
Two sources of light producing the same frequency will not have a constant phase 
relationship so will not produce clear interference effects. 
 
This is not the case for sound waves.  We can have two separate loudspeakers, 
connected to the same signal generator, emitting the same frequency which will produce 
an interference pattern. 
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Path Difference and Optical Path Difference 
Sources S1 and S2 are two coherent sources in air. 

S

s

o

urS

Q

1

2  
The path difference is (S2Q - S1Q).  For constructive interference to take place at Q, the 

waves must be in phase at Q.  Hence the path difference must be a whole number of 
wavelengths. 

(S2Q - S1Q) =  m           where m = 0, 1, 2, 3, ...  
(Note:  the letter m is used to denote an integer, not  n,  since we use  n  for refractive index.) 

 
Similarly, for destructive interference to take place the waves must be out of phase at Q by 

/2 (that is a ‘crest’ from S1 must meet a ‘trough’ from S2). 

     (S2Q - S1Q) = (m + 
1
2
  )  
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Optical path difference 
In some situations the path followed by one light beam is inside a transparent material of 
refractive index, n.  Consider two coherent beams S1 and S2 where S1P is in air and S2P is 
in perspex of refractive index n = 1.5.  We will consider the point P itself to be in air. 
 
 
 
 
 

The geometrical path difference S1P - S2P is zero.  
 
But will there be constructive interference at P? 
  

 

The wavelength inside the perspex is less than that in air perspex = 
 air

1.5
. Hence the waves 

from S1 and S2 may not arrive at P in phase.  For example, if there were exactly Z whole 
waves between S1P, there will be 1.5 x Z waves between S2P which may or may not be a 
whole number of wavelengths.      
 
The optical path length must be considered not the geometrical path length. 
 

Optical path length   =   refractive index × geometrical path length 

 
Thus the relationships for constructive and destructive interference must be considered for 
optical path lengths, S2P and S1P. 

 

For constructive interference (S2P - S1P) =  m             where m is an integer 
 

For destructive  interference (S2P - S1P) = (m + 
1
2
  )   where m is an integer 

 
 
Phase difference and optical path difference 
The optical path difference is the difference in the two optical path lengths, namely 
(S2P - S1P) in our general example. 

The phase difference is related to the optical path difference: 
 

phase difference  =  
2


  ×  optical path difference 

 

where  is the wavelength in vacuum. 
 
Notice that when the optical path difference is a whole number of wavelengths, the phase 

difference is a multiple of 2, i.e. the waves are in phase.  
 

perspex 

S2 

S1 

P 
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Phase Change on Reflection 
To understand interference caused by multiple reflections it is necessary to consider what 
happens when a light wave moving in air hits a material such as glass. 
On a large scale we can see what happens to the wave when a pulse on a rope or 'slinky' 
reflects off a dense material such as a wall. 
 

incident

pulse

reflected

pulse

 

 
 
The reflected pulse is said to 
undergo a phase change of 180° 

or  radians.  The reflected pulse is 
180° out of phase with the incident 
pulse.  If these two pulses were to 
meet they would momentarily 
cancel as they passed one 
another. 

 
There is a similar phase change when a light wave is reflected off a sheet of glass. 
 

In general for light there is a phase change of  on reflection at an interface where there 
is an increase in optical density, e.g. a higher refractive index such as light going from air 
to glass.  There is no phase change on reflection where there is a decrease in optical 
density, e.g. a lower refractive index such as light going from glass to air. 
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Thin parallel sided film 
Interference by division of amplitude can be produced by thin films as shown below. 
 

 

A

ra

ys

B 

incident monochromatic ray of light 

 

reflected ray 

 transmitted rays 

air glass air 

D1 
D2 

 
 
Notice that an extended source can be used.  The amplitude of the beam is divided by 
reflection and transmission at D1, and again by reflection and transmission at D2 at the 
back of the glass sheet.   
 
An eye, at A, will focus the reflected beams and an eye at B will focus the transmitted 
beams. Thus interference patterns can be observed in both the reflected and transmitted 
beams. 
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Condition for maxima and minima in the fringes formed in a thin film 
The following explanations are for light incident normally on a thin film or sheet of glass.  
The diagrams only show light paths at an angle to distinguish clearly the different paths. 
 
Reflected light 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The ray following path 1 reflects off the glass which has a higher refractive index than air.  

It therefore experiences a  phase change. 
 
The ray following path 2 reflects off air so experiences no phase change on reflection.  
However, it travels through the glass twice so has an optical path difference compared to 
ray 1 of 2nt, where n is the refractive index of the glass. 
 
Therefore for constructive interference for the reflected light, i.e. for rays 1 and 2 to be in 

phase, then the optical path difference 2nt must give a  phase change.  Therefore: 

2nt = (m + ½)  where m is an integer. 
 
For constructive interference for the reflected light, i.e. for rays 1 and 2 to be exactly out of 
phase, then the optical path difference 2nt must give zero phase change.  Therefore: 

2nt = m  where m is an integer. 
 
 
  

glass air air 

t 

incident ray 

1 

2 
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Transmitted light 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The ray following path 3 passes through the glass with zero phase change. 
 
The ray following path 4 reflects off air twice so experiences no phase change on 
reflection.  However, it travels through the glass twice more than path 3 so has an optical 
path difference compared to ray 3 of 2nt, where n is the refractive index of the glass. 
 
Therefore for constructive interference for the transmitted light, i.e. for rays 3 and 4 to be in 
phase, then the optical path difference 2nt must give zero phase change.  Therefore: 

2nt = m  where m is an integer. 
 
For constructive interference for the transmitted light, i.e. for rays 3 and 4 to be exactly out 

of phase, then the optical path difference 2nt must give a  phase change.  Therefore: 

2nt = (m + ½)   where m is an integer. 
 
 
Note 
For a certain thickness of thin film the conditions are such that the reflected light and 
transmitted light have opposite types of interference.  Therefore energy is conserved at all 
times. 
 
Example 

A sheet of mica is 4.80 m thick.  Light of wavelength 512 nm is shone onto the mica.  
When viewed from above, will there be constructive, destructive, or partial destructive 
interference?  The refractive index of mica is 1.60 for light of this wavelength.   
 
Solution 

For destructive interference  2nt  =   m 
 2 × 1.60 × 4.80 × 10−6   =   m × 512 × 10−9 
 m  =   30 
 
This is an integer.  Hence destructive interference is observed. 
  

glass air air 

t 

incident ray 

1 

2 
3 

4 
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Wedge Fringes 
Two glass slides are arranged as shown below. 
Division of amplitude takes place at the lower surface of the top glass slide. 
 
 

A 
 t

m

o

 air wedge 

 incident light 

 

 

 
Enlarged view showing the 
geometry 
 

t  

 

x 
/2 

 
 
When viewed from above the optical path difference = 2t  

There is a phase difference of  on reflection at A. Hence the condition for a dark fringe is   

2t = m   assuming an air wedge. 

For the next dark fringe t increases by  


2
    (see right hand sketch above). 

Thus the spacing of fringes, x, is such that tan    


2 x
 


giving  

 

x  =  
2 tan

   

 
 
 
A wedge of length L and spacing D 

  tan   =  
D
L

. 

 

 

 

 

The fringe spacing is 
given by 

x  =  L
2 D

   

where  is the wavelength of light in 
air. 

 
In practice the distance across a number of fringes is measured and x determined.   
 
Notice that the fringes are formed inside the wedge, and that the two reflected rays are 
diverging.  The eye, or a microscope, must be focussed between the plates for viewing the 
fringes. 
 
A wedge can be formed by two microscope slides in contact at one end and separated by 
a human hair or ultra thin foil at the other end.  In this way the diameter of a human hair 
can be measured. 
 
Similarly, if a crystal is placed at the edge and heated, the thermal expansion can be 
measured by counting the fringes as the pattern changes. 
 
  

 

 L 

D 
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Non-reflecting Coating 
Good quality lenses in a camera reflect very little light and appear dark or slightly purple.  
A thin coating of a fluoride salt such as magnesium fluoride on the surface of the lens 
allows the majority of the light falling on the lens to pass through. 
The refractive index, n, of the coating is chosen such that 1 < n < nglass. 
 

fluoride coating of

refractive index n   

d

glass lens

 

Notice that there is a phase 

change of  at both the first and 
second surfaces. 
 
For cancellation of reflected light: 

optical path difference =  


2
  . 

Optical path in fluoride =  2nd 

   thus     2nd = 


2
  and 

 d = 


n
  

 
Complete cancellation is for one particular wavelength only.  Partial cancellation occurs for 
other wavelengths.   
The wavelength chosen for complete cancellation is in the yellow/green (i.e. middle) of the 
spectrum.  This is why the lens may look purple because the reflected light has no yellow 
present.  The red and blue light are partially reflected to produce the purple colour 
observed.  
 
 
Colours in thin films 
When a soap film is held vertically in a ring and is illuminated with monochromatic light it 
initially appears coloured all over.  However when the soap drains downwards a wedge 
shaped film is produced, with the top thinner than the bottom.  Thus horizontal bright and 
dark fringes appear.  When illuminated by white light, colours are formed at positions 
where the thickness of the film is such that constructive interference takes place for that 
particular colour.  Just before the soap film breaks, the top appears black because the film 
is so thin there is virtually no path difference in the soap.  Destructive interference occurs 
because of the phase change on reflection. 
 
Similar colours are observed when a thin film of oil is formed on water. 
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Interference - Division of Wavefront 
 
Division of Wavefront 
When light from a single point source is incident on two small slits, two coherent beams of 
light can be produced.  Each slit acts as a secondary source due to diffraction.   
 
If an extended source is used, each part of the wavefront will be incident on the slit at a 
different angle.  Each part of the source will then produce a fringe pattern, but slightly 
displaced.  When the intensity of all the patterns is summed the overall interference 
pattern may be lost.  However a line source parallel to the slits is an exception. 
 
Compare this with the use of an extended source in ‘division of amplitude’. 
 
 
Young's Slits Experiment 
The diagram below shows light from a single source of monochromatic light incident on a 
double slit.  The light diffracts at each slit and the overlapping diffraction patterns produce 
interference. 

 

Q  
centre 

D 

O 

A 

B 

M d 

 

N 

P 
position of 1

st
  

bright fringe 

 
x 

incident 

waves 

 

 
A bright fringe is observed at P.  Angle PMO is .  

N is a point on BP such that NP = AP.  Since P is the first bright fringe BN =   

For small values of  AN cuts MP at almost 900 giving angle MAQ =  and hence 

angle   . 

Again providing  is very small, sin  = tan  =  in radians  

From triangle BAN:  = 

d

   also from triangle PMO:  =  
x

D
   


 

 Thus   
x

D
   


=   

d
 


 or  x  =  

D
d

  

Giving the fringe separation between adjacent fringes x 
 

x  =  
D
d

 

 
Note  

This formula only applies if x<<D, which gives  small.  This is likely to be true for light 
waves but not for microwaves.   
 
The position of the fringes is dependent on the wavelength.  Thus if white light is used we 
can expect overlapping colours either side of a central white maximum.  The red, with the 
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longer wavelength, will be the furthest from this white maximum (xred > xviolet since red > 

violet). 
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Polarisation 
 
Polarised and unpolarised waves 
Light is a wave motion, and is part of the electromagnetic spectrum.  In all 
electromagnetic waves the electric field and magnetic field vary.   The diagram below 
shows a 3-dimensional picture of such a wave. 
 
 
 
 
 
 
 
 
 
The above diagram shows the variation of the electric field strength, E, in the x-y plane 
and the variation of the magnetic induction, B, in the x-z plane.  In this example the electric 
field strength is only in one plane.  The wave is said to be plane polarised, or linearly 
polarised.  For example, in Britain this is the way that T.V. waves are transmitted.  Aerials 
are designed and oriented to pick up the vertical electric field strength vibrations.  These 
vibrations contain the information decoded by the electronic systems in the television. 
 
Light from an ordinary filament lamp is made up of many separate electromagnetic waves 
produced by the random electron transitions in the atoms of the source.  So unlike the 
directional T.V waves, light waves from a lamp consist of many random vibrations.  This is 
called an unpolarised wave. 
 
When looking at an unpolarised wave coming towards you the direction of the electric 
field strength vector would appear to be vibrating in all direction, as shown in the diagram 
(i) on the left below.  The magnetic induction vector would be perpendicular to the electric 
field strength vector, hence this too would be vibrating in all directions   However when 
discussing polarisation we refer to the electric field strength vector only. 
 
All the individual electric field strength vectors could be resolved in two mutually 
perpendicular direction to give the other representation of a unpolarised wave, as shown 
below in the centre diagram (ii). 
 
 
 
 
 
 
 
 
 
 
The right hand diagram (iii)  above represents a polarised wave. 
 
Longitudinal and transverse waves 
Note that only transverse waves can be polarised.  Longitudinal waves, e.g. sound waves, 
cannot be polarised. 

(i)  unpolarised wave (ii) unpolarised wave (iii) polarised wave 
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Polarisation using Filters 
We can produce a linearly polarised wave if we can somehow absorb the vibrations in all 
the other directions except one. 
 
In 1852 Herapath discovered that a crystal of iodo-quinine sulphate transmitted one plane 
of polarisation, other planes being absorbed.  In 1938 Land produced the material 
‘Polaroid’, which has a series of parallel long hydrocarbon chains.  Iodine atoms 
impregnate the long chains providing conduction electrons.  Light is only transmitted when 
the electric field strength vector is perpendicular to the chain. 
 
The arrangement below shows a polaroid filter at X producing linearly polarised light.  The 
polaroid at X is called a polariser.  Vibrations of the electric field strength vector at right 
angles to the axis of transmission are absorbed.  

 

eye 
X Y 

axis of 

transmission  
A second polaroid at Y is placed perpendicular to the first one, as shown above.  This is 
called an analyser.  The analyser absorbs the remaining vibrations because its axis of 
transmission is at right angles to the polariser at X and no light is seen by the eye.  The 
light between X and Y is called linearly or plane polarisation.  
 
These effects also can be demonstrated using microwaves and a metal grid.   

 

T 

R 

metal grid 

 
 
The microwaves emitted by the horn are plane polarised.  In this example the electric field 
strength vector is in the vertical plane.  The waves are absorbed by the rods and re-
radiated in all directions.  Hence there will be a very low reading on the receiver, R.  When 
the metal grid is rotated through 90o the waves will be transmitted, and the reading on the 
receiver will rise.  Notice that the microwaves are transmitted when the plane of oscillation 
of the electric field strength vector is perpendicular to the direction of the rods. 
 
 
Polarisation by Reflection 
Plane polarised waves can be produced naturally by light reflecting from any electrical 
insulator, like glass.  When refraction takes place at a boundary between two transparent 
materials the components of the electric field strength vector parallel to the boundary are 
largely reflected.  Thus reflected light is partially plane polarised. 
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Plane polarisation at the Brewster angle 
 

ip ip 

r 

analyser 

air 

glass 

normal 

90 ° 

refractive index n 

 
 

Consider a beam of unpolarised light incident on a sheet of smooth glass.  This beam is 
partially reflected and partially refracted.  The angle of incidence is varied and the reflected 
ray viewed through an analyser, as shown above.  It is observed that at a certain angle of 
incidence ip  the reflected ray is plane polarised.  No light emerges from the analyser at 

this angle. 
 
The polarising angle ip  or Brewster’s angle is the angle of incidence which causes the 

reflected light to be linearly polarised.  
 
This effect was first noted by an experimenter called Malus in the early part of the 
nineteenth century.  Later Brewster discovered that at the polarising angle ip the refracted 

and reflected rays are separated by 90°.  
Consider the diagram above, which has this 90° angle marked: 

   n  =  
sin ip
sin r

   

   but   r  =  (90  -  ip)    thus   sin r  =  sin (90  -  ip)  =  cos ip 

   thus   n  =  
sin ip
cos ip

    =  tan ip   

    n  =  tan ip    

 
Example 
Calculate the polarising angle for glycerol, n = 1.47. 
What is the angle of refraction inside the glycerol at the Brewster angle? 
 
Solution 
Using the equation    n  =  tan ip       1.47  =  tan ip     giving ip  =  56o.  

At the Brewster angle, which is the polarising angle,  
  angle of refraction + ip  = 90o    thus angle of refraction = 44o. 

 
 
Reduction of Glare by Polaroid sunglasses 
When sunlight is reflected from a horizontal surface, e.g. a smooth lake of water, into the 
eye, eyestrain can occur due to the glare associated with the reflected light.  The intensity 
of this reflected beam can be reduced by wearing polaroid sunglasses.  These act as an 
analyser and will cut out a large part of the reflected polarised light. 
 
 


