1. The acceleration a of an object is given by the following expression:

$$
a=\frac{d^{2} s}{d t^{2}}
$$

where the symbols have the usual meanings.
(a) Starting with this expression for acceleration, show that, for an object moving with a constant acceleration, the velocity v of the object at time t is given by:

$$
v=u+a t
$$

where u is the velocity at $t=0$.
(b) A test vehicle moves in a straight line along a track. Its displacement, in metres, as a function of time is given by:

$$
s=24 t-2 t^{2}
$$

Determine:
(i) the time when the vehicle momentarily comes to rest;
(ii) the vehicle's displacement at this time;
(iii) the vehicle's acceleration.
(c) The test vehicle was timed as it travelled a measured distance of (1.000 ± 0.005) m along the track. The times recorded for this distance were:
$1 \cdot 21 \mathrm{~s}$
$1 \cdot 23 \mathrm{~s}$
$1 \cdot 24 \mathrm{~s}$
$1 \cdot 20 \mathrm{~s}$
$1 \cdot 22 \mathrm{~s}$

Calculate:

(i) the average speed of the vehicle;
(ii) the absolute uncertainty in this speed.
2. Figure 1 A shows a space shuttle shortly after take off.

Figure 1A
Immediately after take-off, the vertical displacement of the shuttle for part of its journey can be described using the equation:

$$
s=3 \cdot 1 t^{2}+4 \cdot 1 t
$$

(a) Determine, by differentiation, the equation for the vertical velocity of the shuttle.
(b) Calculate the time at which the vertical velocity will be $72 \mathrm{~ms}^{-1}$.
(c) Calculate the vertical linear acceleration at this time.
3. A stunt driver is attempting to "loop the loop" in a car as shown in Figure 1. Before entering the loop, the car accelerates along a horizontal track.

Figure 1

When the car exits the loop, the driver starts breaking at point X . For one particular run, the displacement of the car from point X until the car comes to rest at point Y is given by the equation:

$$
s=9 \cdot 1 t-3 \cdot 2 t^{2}
$$

Sketch a graph to show how the displacement of the car varies with time between points X and Y.
Numerical values are required on both axes.
4.

A car on a long straight track accelerates from rest. The car's run begins at time $t=0$. Its velocity v at time t is given by the equation:

$$
v=0 \cdot 135 t^{2}+1 \cdot 26 t
$$

where v is measured in ms^{-1} and t is measured in s .
Using calculus methods:
(a) determine the acceleration of the car at $t=15.0 \mathrm{~s}$;
(b) determine the displacement of the car from its original position at this time.

