Homework 6 - Stellar Physics

1. Cygnus X-1 is an x-ray source in the constellation Cygnus that astrophysicists believe is a black hole. An artist's impression is shown in Figure 1A.

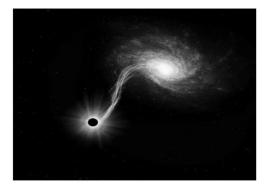


Figure 1A

The mass of the black hole has been determined to be 14.8 solar masses.

- (a) (i) State what is meant by the Schwarzschild radius of a black hole.
 - (ii) Calculate the Schwarzchild radius of the black hole in Cygnus X-1.
- (b) The Hertzsprung-Russell (H-R) diagram shown in Figure 1B shows the relationship between luminosity and surface temperature of stars.

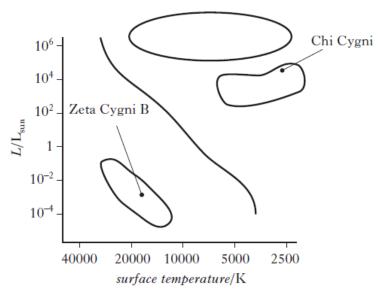


Figure 1B

Zeta Cygni B and Chi Cygni are two stars in the constellation Cygnus. They are shown on the H-R diagram. Chi Cygni is more luminous than Zeta Cygni B. Describe two other differences between these stars.

- (c) Another star, Aldebaran B, is a distance of 6.16×10^{17} m from the Earth. The luminosity of Aldebaran B is 2.32×10^{25} W and its temperature is determined to be 3.4×10^{3} K.
 - (i) Calculate the radius of Aldebaran B.
 - (ii) Calculate the apparent brightness of Aldebaran B as observed from Earth.

2. Hertzsprung-Russell (H-R) diagrams are widely used by physicists and astronomers to categorise stars. Figure 2A shows a simplified H-R diagram.

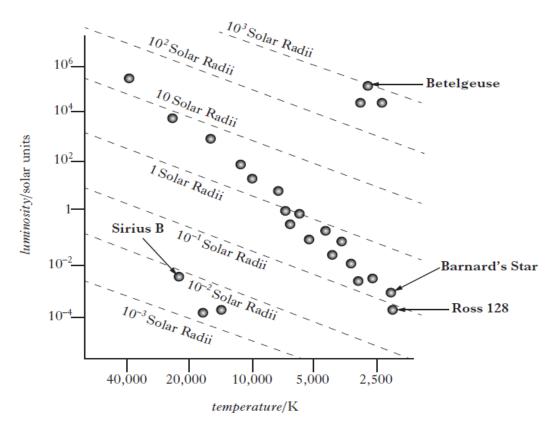


Figure 2A

- (a) State what class of star Sirius B is.
- (b) Estimate the radius of Betelgeuse.
- (c) Ross 128 and Barnard's Star have a similar temperature but Barnard's Star has a slightly greater luminosity.
 - Determine what other information this tells you about the two stars.
- (d) During the life cycle of the Sun, its position in the H-R diagram is expected to change as shown by the arrowed line in Figure 2B.

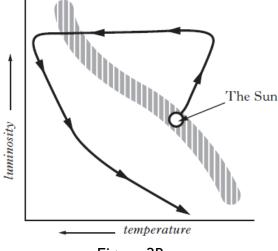


Figure 2B

Describe the changes that occur to the Sun during its expected life cycle.

- (e) Hydrogen fusion in a star is a result of a proton-proton chain. The process eventually results in the production of a helium-4 nucleus.
 - (i) Show that the percentage loss of mass from four protons to one helium-4 nucleus is 0.7%.
 - (ii) The luminosity of the Sun is 3.8×10^{26} W. Using Einstein's energy equation, show that the mass of hydrogen lost per second is 4.2×10^9 kg.
 - (iii) Estimate the lifetime of the Sun in seconds. Assume the mass of hydrogen in the Sun to be the same as the mass of the Sun.
- (f) The "no greenhouse" temperature of a planet is the average surface temperature of a planet in the absence of any greenhouse effect. The "no greenhouse" temperature of a planet, in kelvin, is calculated by:

$$T = 280 \left(\frac{1 - reflectivity}{d^2} \right)^{\frac{1}{4}}$$

where d is the distance from the Sun in astronomical units (AU).

The reflectivity is a measure of the percentage of energy reflected from the surface; 1 represents 100% reflectivity and 0 represents no reflectivity.

Mercury has a reflectivity of 0.12 and is 5.8×10^{10} m from the Sun. Calculate its "no greenhouse" temperature.

3. Information about two stars is given in the table.

	Star A	Star B
Radius (m)	2·0 x 10 ⁹	8·0 x 10 ⁹
Surface Temperature (K)	7000	3500
Distance from Earth (ly)	20	20

- (a) State which star, if any, appears brighter in the Earth's night sky. Justify your answer by calculation.
- (b) Star A could collapse to form a black hole. Calculate the Schwarzschild radius of this black hole, assuming the density of Star A is 2.5×10^3 kg m⁻³.

Note: The density, ρ , of a mass, m, with volume, V, is calculated using $\rho = \frac{m}{V}$.

4. (a) All stars on the main sequence release energy by converting hydrogen to helium. This process is known as the proton-proton (p-p) chain.

One stage in the p-p chain is shown.

$${}_{1}^{1}H + {}_{1}^{1}H \rightarrow {}_{1}^{2}H + x + y$$

Name the particles x and y.

(b) The expression

$$\frac{L}{L_0} = 1 \cdot 5 \left(\frac{M}{M_0}\right)^{3.5}$$

can be used to approximate the relationship between a star's mass M and its luminosity L.

 L_0 is the luminosity of the Sun (1 solar unit) and M_0 is the mass of the Sun. This expression is valid for stars of mass between $2M_0$ and $20M_0$. Spica is a star which has mass $10 \cdot 3M_0$. Determine the approximate luminosity of Spica in solar units.